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Non-Standard Linguistic Features
Stanford |NLP

A language usage that deviates from the conventions

A often associated with specific social or cultural groups

Dialect: A Group of Non-Standard Linguistic Variations in a Language
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Fails on Dialects ~NA
Stanford INLP

[d  Existing models mainly focus on Standard American English (SAE)
A Significant performance drop|when applied to English Dialects
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Previous Work on Dialect Adaptation

Mainly focused on targeted adaptation to a specific dialect

d  Human Annotation (Blevins et al., 2016, Blodgett et al., 2018)

d  Weak Supervision (Jorgensen et al. 2016, Jurgens et al. 2017)

d  Alignment (TADA 2023)
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Abstract

Violence is a serious problems for cities like Chicago and has been exacerbated by the use of so-

cial media by gang-involved youths for taunting rival gangs. We present a corpus of tweets from

a young and powerful female gang member and her communicators, which we have annotated
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Abstract

Language identification (LID) is a criti-
cal first step for processing multilingual
text. Yet most LID systems are not de-
signed to handle the linguistic diversity of
global platforms like Twitter, where lo-
cal dialects and rampant code-switching
lead language classifiers to systematically
‘miss minority dialect speakers and mul-
tilingual speakers. We propose a new
dataset and a character-based sequence-to-
sequence model for LID designed to sup-
port dialectal and multilingual language
varieties. Our model achieves state-of-the-
art performance on multiple LID bench-
marks. Furthermore, in a case study us-

1. @username R u a wizard or wat gan scf: in d mornin -
u tweet, afternoon - u tweet, nyt gan u dey tweet. bela
getur IT placement wiv twite

2. Be the lord lantern jaysus me heart after that match!1!

3. Aku hanya mengagumimu dari jah sckarang . RDK
({})* last tweet about you -,

Figure 1: Challenges for socially-equitable LID in Twitter
include dialectal text, shown from Nigeria (#1) and Ireland
(#2), and multilingual text (Indonesian and English) in #3.

graphic and dialectal variation. As a result, these
systems systematically misclassify texts from pop-
ulations with millions of speakers whose local
speech differs from the majority dialects (Hovy
and Spruit, 2016; Blodgett et al., 2016).

Multiple systems have been proposed for broad-
coverage LID at the global level (McCandless,
2010; Lui and Baldwin, 2012; Brown, 2014; Jaech

| Highly accurate dialect identification systems are required!
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However!!! Inherent Flexibility of Dialects
Stanford INLP

1 Flexible Boundaries

=>no highly accurate dialect identification systems available

[ Vary Depending on Personal and Social Contexts

=> dialects do not neatly fit into predefined categories

Accommodate the diversity of dialects from a Fine-Grained
perspective Linguistic Features
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Dialect Adaptation via Dynamic Aggregation 7/
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¢ Modular and D i
= Miodular and Uynamic Dialect Adaptation via Dynamic Aggregation
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A Multi-Dialectal Robustness

drop_aux: AAVE allows
copula deletion and
other auxiliary dropping.

— N

Frozen Layer

Adapter Fusion

[ Input Dialect-Agnostic

(A Personal- and Social-Contextual

Linguistic Rule S <

-

: -1

7

Within Only 3 Steps Feature Adapter

t

Frozen Layer

\L 4 |/

v

Adapter Training

1. Synthetic Datasets Construction

2. Feature Adapter Training Feature Adapters ¥
Pool N

3. Dynamic Aggregation




Step 1: Synthetic Datasets Construction
Stanford INLP

¥ Construct a transformed dataset for each non-standard (morphosyntactic) linguistic feature.
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[2] Ziems et al. 2022. Multi-VALUE: Evaluating Cross-dialectal NLP. ACL 2023.
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Step 2: Feature Adapter Training

Train a feature adapter for each non-standard linguistic feature.
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Step 3: Dynamic Aggregation %
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¥ Aggregate & activate feature adapters —  Add & Norm

dynamically.
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Experiments
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1/ DADA Can Improve Multi-Dialectal Robustness m
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Adapt SAE model to multiple dialect variants simultaneously: y ChcE, CollSgE, IndE, AAVE
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2/ DADA Can Be Task-Agnostic %
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Adapt instruction-tuned SAE model to the dialect variants for multiple tasks
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3/ DADA Has Great Interpretability! @
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Correlation Coefficients for AAVE Adaptation
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We use abbreviations for certain terms, such as "nc" for "negative concord."”



Conclusion and Future Work
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Dynamic Aggregation of Linguistic Features
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A AFine-grained and Modular Method for Dialect Adaptation

A Improve Multi-Dialect and Multi-Task Robustness
[ No need for highly accurate dialect identification systems
(A Taking personal and social context into account
A Applicable to task-agnostic instruction-tuned LLMs

A Interpretability, reusability and extensibility



But!!!

Non-Standard Linguistic Features

[ are curated by linguists (eWAVE) and
A playacrucial role in a wide range of applications.
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However, the manual curation of linguistic rules can be expensive and expertise-intensive.

Empower Linguistic Research with LLMs
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Large Language Models Can Discover Linguistic Features



https://ewave-atlas.org/

